CHo các số dương a,b,c dương thỏa mã a+b+c=1.tìm gtln của \(A=\frac{\sqrt{3a}+2\sqrt{bc}}{1+\sqrt{bc}+3\sqrt{a+bc}}+\frac{\sqrt{3b}+2\sqrt{ca}}{1+\sqrt{ca}+3\sqrt{b+ca}}+\frac{\sqrt{3c}+2\sqrt{ab}}{1+\sqrt{ab}+3\sqrt{c+ab}}\)
với a,b,c là các số thực dương thay đổi nhưng luôn thỏa mãn \(a^2+b^2+c^2\)≤3.CMR a+b+c≤3 và từ đó tìm giá trị lớn nhất của tổng
E=\(\dfrac{a}{\sqrt[3]{3a+bc}}+\dfrac{b}{\sqrt[3]{3b+ca}}+\dfrac{c}{\sqrt[3]{3c+ab}}\)
với a,b,c là các số thực dương thay đổi nhưng luôn thỏa mãn \(a^2+b^2+c^2\le3\).CMR a+b+c≤3 và từ đó tìm giá trị lớn nhất của tổng
E=\(\dfrac{a}{\sqrt[3]{3a+bc}}+\dfrac{b}{\sqrt[3]{3b+ca}}+\dfrac{c}{\sqrt[3]{3c+ab}}\)
Cho a, b, c là số dương thỏa mãn a + b + c = 3. Chứng minh rằng:
\(\frac{\sqrt{3a+bc}}{a+\sqrt{3a+bc}}+\frac{\sqrt{3b+ac}}{a+\sqrt{3b+ac}}+\frac{\sqrt{3c+ab}}{a+\sqrt{3c+ab}}\ge2\)
Cho a, b, c là các số thực dương. Chứng minh rằng:
\(\sqrt{\frac{bc}{a\left(3b+a\right)}}+\sqrt{\frac{ca}{b\left(3c+b\right)}}+\sqrt{\frac{ab}{c\left(3a+c\right)}}\ge\frac{3}{2}\)
1,Cho a,b,c>0 thỏa mãn a+b+c=abc.CMR:
\(\frac{bc}{a\left(1+bc\right)}+\frac{ca}{b\left(1+ca\right)}+\frac{ab}{c\left(1+ab\right)}\ge\frac{3\sqrt{3}}{4}\)
2,Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=3\)
Tìm GTLN của P= \(\sqrt{\frac{a^2}{a^2+b+c}}+\sqrt{\frac{b^2}{b^2+c+a}}+\sqrt{\frac{c^2}{c^2+a+b}}\)
3,Cho a,b,c>0 thỏa mãn a+b+c=3.
Tìm GTLN của Q= \(2\sqrt{abc}\left(\frac{1}{\sqrt{3a^2+4b^2+5}}+\frac{1}{\sqrt{3b^2+4c^2+5}}+\frac{1}{\sqrt{3c^2+4a^2+5}}\right)\)
4,Cho a,b,c>0.
Tìm GTLN của P= \(\frac{\sqrt{ab}}{c+3\sqrt{ab}}+\frac{\sqrt{bc}}{a+3\sqrt{bc}}+\frac{\sqrt{ca}}{b+3\sqrt{ca}}\)
cho a,b,c là các số thực dương thoả mãn a+b+c=3a+b+c=3
Chứng minh rằng:
\(\sqrt{\frac{a+b}{c+ab}}+\sqrt{\frac{b+c}{a+bc}}+\sqrt{\frac{c+a}{b+ca}}\ge3\)
Cho các số thực dương a ; b ; c thỏa mãn : 1/a + 1/b + 1/c \(\le3\)
Tìm Min P = \(\frac{1}{\sqrt{a^2-ab+3b^2+1}}+\frac{1}{\sqrt{b^2-bc+3c^2+1}}+\frac{1}{\sqrt{c^2-ac+3a^2+1}}\)
Cho các số thực dương a,b,c thỏa mãn ab+bc+ca=5 . Tìm giá trị nhỏ nhất của
P=\(\frac{3a+3b+2c}{\sqrt{6\left(a^2+5\right)}+\sqrt{6\left(b^2+5\right)}+\sqrt{c^2+5}}\)
Cho ba số thực dương a,b,c thỏa mãn ab+bc+ca = 3abc. Tìm giá
trị lớn nhất của biểu thức T = \(\sqrt{\dfrac{a}{3b^2c^2+abc}}+\sqrt{\dfrac{b}{3b^2c^2+abc}}+\sqrt{\dfrac{c}{3a^2b^2+abc}}\)