Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Khả Nhi

cho các số thực dương a; b; c thỏa mãn a^2 + b^2 + c^2 = 27 . Tìm giá trị nhỏ nhất của S = a^3 +b^3 +c^3

Hà Nguyễn Anh Quân
6 tháng 4 2020 lúc 15:05

Điền số thích hợp vào ô trống : 10/12 < 17/ ? < 10/11

Khách vãng lai đã xóa
tth_new
7 tháng 4 2020 lúc 16:41

Dùng cái này:

Do: $1/2\, \left( 2\,a+3 \right)  \left( a-3 \right) ^{2} \geqq 0$ với mọi a > 0.

Nên: ${a}^{3}\geqq 9/2\,{a}^{2}-27/2 $ (*)

Áp dụng BĐT (*)...

Khách vãng lai đã xóa
Aug.21
8 tháng 4 2020 lúc 12:32

Ta có :

(2a+3)(a-3)2 \(\ge\) 0 <=> (2a+3)(a2 -6a+9) \(\ge\) 0

<=> 2a3 - 12a2 +18a +3a3 -18a+7 <=> 2a3 - 9a2 + 27 \(\ge\) 0

Dấu " = " xảy ra <=> x=3

Tương tự ta có : 2b3 -9b2 +27 \(\ge\) 0; 2c3-9c2+27\(\ge\) 0

Mà a2 +b2 + c=27 (gt)

Do đó : 2(a3+b3+c3)-9(a2+b2+c2)+27.3 \(\ge\) 0

<=> 2( a3 + b3 +c3)\(\ge\) 6.27 <=> a3+b3+c3 \(\ge\) 81

Dấu "=" xảy ra <=> a=b=c=3

Vậy GTNN của S= a3+b3+c3 là 81

Khách vãng lai đã xóa

Các câu hỏi tương tự
Hoang Tran
Xem chi tiết
Người Vô Danh
Xem chi tiết
Nguyễn Thị Minh Nguyệt
Xem chi tiết
Hải Phan Đức
Xem chi tiết
kaneki_ken
Xem chi tiết
kaneki_ken
Xem chi tiết
kaneki_ken
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Nguyễn Thị Kim Tuyến
Xem chi tiết