Cho các số phức z thỏa mãn z - i = z - 1 + 2 i . Tập hợp các điểm biểu diễn số phức w = ( 2 - i ) z + 1 trên mặt phẳng tọa độ là một đường thẳng. Phương trình đường thẳng đó là
A. x - 7 y - 9 = 0
B. x + 7 y - 9 = 0
C. x + 7 y + 9 = 0
D. x - 7 y + 9 = 0
Cho số phức z thay đổi hoàn toàn thỏa mãn: z − i = z − 1 + 2 i . Tập hợp các điểm trên mặt phẳng tọa độ biểu diễn số phức w thỏa mãn: w = 2 − i z + 1 là một đường thẳng. Viết phương trình đường thẳng đó.
A. − x + 7 y + 9 = 0.
B. x + 7 y − 9 = 0.
C. x + 7 y + 9 = 0.
D. x − 7 y + 9 = 0.
Cho các số phức z thỏa mãn z + 1 - i = z - 1 + 2 i . Tập hợp các điểm biểu diễn số phức z là một đường thẳng. Viết phương trình đường thẳng đó
A. 4x+6y-3=0
B. 4x+6y+3=0
C. 4x-6y+3=0
D. 4x-6y-3=0
Trong mặt phẳng tọa độ Oxy, cho số phức z thỏa mãn z - 1 + 2 i = 3 . Tập hợp các điểm biểu diễn cho số phức w=z(1+i) là đường tròn
A. Tâm I(3;-1); R = 3 2
B. Tâm I(3;-1);R=3
C. Tâm I(-3;1); R = 3 2
D. Tâm I(3;-1);R=3
Có bao nhiêu số phức z thỏa mãn z - 2 i = 5 và tập điểm biểu diễn của số phức z trong mặt phẳng tọa độ là đường thẳng ∆ : 3x-y+1=0?
A. 2
B. 1
C. 0
D. Vô số
Tập hợp các điểm biểu diễn số phức z thỏa mãn là đường thẳng z - 1 + i = z + 1 - 2 i là đường thẳng ∆ : a x + b y + c = 0 . Tính ab + c
A. 15
B. 9
C. 11
D. 6
Trong không gian tọa độ Oxyz, cho mặt cầu S : x 2 + y 2 + z 2 + 4 x - 6 y + m = 0 và đường thẳng ∆ là giao tuyến của hai mặt phẳng α : x + 2 y - 2 z - 4 = 0 và β : 2 x - y - z + 1 = 0 . Đường thẳng ∆ cắt mặt cầu (S) tại hai điểm phân biệt A, B thỏa mãn A B = 8 khi:
A. m = 12
B. m = -12
C. m = -10
D. m = 5
Cho số phức z=x+yi (x,y∈ R) thỏa mãn z+1-2i- z (1-i)=0. Trong mặt phẳng tọa độ Oxy, M là điểm biểu diễn của số phức z, M thuộc đường thẳng nào sau đây?
A. x+y-2=0.
B. x-y+2=0.
C. x+y-1=0.
D. x+y+1=0.
Cho số phức z=x+yi (x,y∈ R) thỏa mãn z+1-2i- z (1-i)=0. Trong mặt phẳng tọa độ Oxy, M là điểm biểu diễn của số phức z, M thuộc đường thẳng nào sau đây?
A. x+y-2=0.
B. x-y+2=0.
C. x+y-1=0.
D. x+y+1=0.