Bài 1: Nhân đơn thức với đa thức

Ha Hoang Vu Nhat

cho các số dương a,b,c thỏa mãn a+b+c = \(\dfrac{3}{2}\)

cmr: \(\dfrac{1+b}{1+4a^2}+\dfrac{1+c}{1+4b^2}+\dfrac{1+a}{1+4c^2}\ge\dfrac{9}{4}\)

Lightning Farron
9 tháng 4 2017 lúc 22:20

dạng này chắc chắc là phải dùng AM-GM ngược dấu rồi :)

Ta có:

\(\dfrac{1+b}{1+4a^2}=1+b-\dfrac{4a^2\left(b+1\right)}{4a^2+1}\ge1+b-\dfrac{4a^2\left(b+1\right)}{4a}=1+b-a\left(b+1\right)\)

Tương tự cho 2 BĐT còn lại ta có:

\(\dfrac{1+c}{1+4b^2}\ge1+c-b\left(c+1\right);\dfrac{1+a}{1+4c^2}\ge1+a-c\left(a+1\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(VT=\dfrac{1+b}{1+4a^2}+\dfrac{1+c}{1+4b^2}+\dfrac{1+a}{1+c^2}\)

\(\ge3+\left(a+b+c\right)-\left(ab+bc+ca\right)-\left(a+b+c\right)\)

\(=3-\dfrac{1}{3}\left(a+b+c\right)^2=3-\dfrac{1}{3}\cdot\dfrac{9}{4}=\dfrac{9}{4}=VP\)

Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{2}\)

Bình luận (0)
Kuro Kazuya
9 tháng 4 2017 lúc 23:12

\(VT=\left(\dfrac{a}{1+4c^2}+\dfrac{b}{1+4a^2}+\dfrac{c}{1+4b^2}\right)+\left(\dfrac{1}{1+4c^2}+\dfrac{1}{1+4a^2}+\dfrac{1}{1+4b^2}\right)\)

\(VT=\dfrac{3}{2}-\left(\dfrac{4c^2a}{1+4c^2}+\dfrac{4a^2b}{1+4a^2}+\dfrac{4b^2c}{1+4b^2}\right)+3-\left(\dfrac{4c^2}{1+4c^2}+\dfrac{4a^2}{1+4a^2}+\dfrac{4b^2}{1+4b^2}\right)\)

Xét \(\dfrac{3}{2}-\left(\dfrac{4c^2a}{1+4c^2}+\dfrac{4a^2b}{1+4a^2}+\dfrac{4b^2c}{1+4b^2}\right)\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}1+4c^2\ge2\sqrt{4c^2}=4c\\1+4a^2\ge2\sqrt{4a^2}=4a\\1+4b^2\ge2\sqrt{4b^2}=4b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{4c^2a}{1+4c^2}\le\dfrac{4c^2a}{4c}=ca\\\dfrac{4a^2b}{1+4a^2}\le\dfrac{4a^2b}{4a}=ab\\\dfrac{4b^2c}{1+4b^2}\le\dfrac{4b^2c}{4b}=bc\end{matrix}\right.\)

\(\Rightarrow\dfrac{3}{2}-\left(\dfrac{4c^2a}{1+4c^2}+\dfrac{4a^2b}{1+4a^2}+\dfrac{4b^2c}{1+4b^2}\right)\ge\dfrac{3}{2}-\left(ab+bc+ca\right)\) (1)

Xét \(3-\left(\dfrac{4c^2}{1+4c^2}+\dfrac{4a^2}{1+4a^2}+\dfrac{4b^2}{1+4b^2}\right)\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}1+4c^2\ge2\sqrt{4c^2}=4c\\1+4a^2\ge2\sqrt{4a^2}=4a\\1+4b^2\ge2\sqrt{4b^2}=4b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{4c^2}{1+4c^2}\le\dfrac{4c^2}{4c}=c\\\dfrac{4a^2}{1+4a^2}\le\dfrac{4a^2}{4a}=a\\\dfrac{4b^2}{1+4b^2}\le\dfrac{4b^2}{4b}=b\end{matrix}\right.\)

\(\Rightarrow3-\left(\dfrac{4c^2}{1+4c^2}+\dfrac{4a^2}{1+4a^2}+\dfrac{4b^2}{1+4b^2}\right)\ge\dfrac{3}{2}\) (2)

Từ (1) và (2)

\(\Rightarrow VT\ge\dfrac{3}{2}-\left(ab+bc+ca\right)+\dfrac{3}{2}\)

\(\Rightarrow VT\ge3-\left(ab+bc+ca\right)\) (3)

Theo hệ quả của bất đẳng thức Cauchy

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow\dfrac{3}{4}\ge ab+bc+ca\)

\(\Rightarrow3-\dfrac{3}{4}\le3-\left(ab+bc+ca\right)\)

\(\Rightarrow\dfrac{9}{4}\le3-\left(ab+bc+ca\right)\) (4)

Từ (3) và (4)

\(\Rightarrow VT\ge\dfrac{9}{4}\)

\(\Leftrightarrow\dfrac{1+b}{1+4a^2}+\dfrac{1+c}{1+4b^2}+\dfrac{1+a}{1+4c^2}\ge\dfrac{9}{4}\) (đpcm)

Dấu " = " xảy ra khi \(a=b=c=\dfrac{1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
Duong Thi Nhuong
Xem chi tiết
Nguyễn Lê Việt ANh
Xem chi tiết
Linh Lê
Xem chi tiết
Nguyễn Thị Hải Yến
Xem chi tiết
Love Lém Lỉnh
Xem chi tiết
Đỗ Linh Chi
Xem chi tiết
Loveduda
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Lê Nguyễn Ngọc Nhi
Xem chi tiết