tìm tọa độ giao điểm của d1 và d2,d2 và d3, d3 và d4, d4 và d1.Có được bốn tọa độ bốn điểm thì tính từng cạnh rồi tìm chu vi
tìm tọa độ giao điểm của d1 và d2,d2 và d3, d3 và d4, d4 và d1.Có được bốn tọa độ bốn điểm thì tính từng cạnh rồi tìm chu vi
Cho bốn đường thẳng:
; ; ;
cắt nhau tại bốn điểm A, B, C, D. Chu vi tứ giác ABCD =......? (đvđd)
Cho mặt cầu (S) bán kính R = 5cm. Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có chu vi bằng 8 π Bốn điểm A, B, C, D thay đổi sao cho A, B, C thuộc đường tròn (C), điểm D thuộc (S) (không thuộc đường tròn (C)) và tam giác ABC là tam giác đều. Tính thể tích lớn nhất của tứ diện ABCD.
A. 32 3 c m 3 .
B. 60 3 c m 3 .
C. 20 3 c m 3 .
D. 96 3 c m 3 .
Cho mặt cầu (S) bán kính R = 5 c m . Mặt phẳng P cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có chu vi bằng 8 π cm . Bốn điểm A, B, C, D thay đổi sao A, B, C cho thuộc đường tròn (C), điểm D thuộc (S) (D không thuộc đường tròn (C)) và tam giác ABC là tam giác đều. Tính thể tích lớn nhất của tứ diện ABCD.
A. 32 3 c m 3
B. 60 3 c m 3
C. 20 3 c m 3
D. 96 3 c m 3
Cho mặt cầu S có bán kính R = 5 c m . Mặt phẳng P cắt mặt cầu S theo giao tuyến là đường tròn C có chu vi bằng 8 π . Bốn điểm A, B, C, D thay đổi sao cho A, B, C thuộc đường tròn C , điểm D thuộc S (D không thuộc đường tròn C ) và tam giác ABC là tam giác đều. Tính thể tích lớn nhất của tứ diện ABCD.
A. 32 3 c m 3
B. 60 3 c m 3
C. 20 3 c m 3
D. 96 3 c m 3
Cho mặt cầu (S) bán kính R = 5 c m . Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có chu vi bằng 8 π (cm). Bốn điểm A, B, C, D thay đổi sao cho A, B, C thuộc đường tròn (C), điểm D thuộc (S)(D không thuộc đường tròn (C) và tam giác ABC đều. Tính thể tích lớn nhất của tứ diện ABCD.
A. 10 3 c m 3
B. 15 3 c m 3
C. 32 3 c m 3
D. 40 3 c m 3
Cho hàm số y = − x 3 + 3 x 2 + 9 x có đồ thị (C). Gọi A, B, C, D là bốn điểm trên đồ thị (C) với hoành độ lần lượt là a, b, c, d sao cho tứ giác ABCD là một hình thoi đồng thời hai tiếp tuyến tại A, C song song với nhau và đường thẳng AC tạo với hai trục tọa độ một tam giác cân. Tính tích abcd.
A. 144
B. 60
C. 180
D. 120
Cho mặt cầu (S) có bán kính R = 5 (cm). Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có chu vi bằng (cm). Bốn điểm A, B, C, D thay đổi sao cho A, B, C thuộc đường tròn (C), điểm D thuộc (S) (D không thuộc đường tròn (C)) và tam giác ABC là tam giác đều. Thể tích lớn nhất của khối tự diện ABCD bằng bao nhiêu?
A. 32 3 c m 2
B. 60 3 c m 2
C. 20 3 c m 2
D. 96 3 c m 2
Cho hàm số y = 2 x + 1 2 x - m có đồ thị (C) và hai điểm A ( -2;3 ); C ( 4;1 ) . Tìm m để đường thẳng d : 3 x - y - 1 = 0 cắt đồ thị (C) tại hai điểm phân biệt B, D sao cho tứ giác ABCD là hình thoi
A. 8 3
B. 3 8
C. 4 3
D. 3 4
Cho tam giác ABC vuông tại A, với AC<AB;AH là đường cao kẻ từ A.Các tiếp tuyến tại A và B với đ/tròn tâm O ngoại tiếp tam giác ABC cắt nhau tại M.Đoạn MO cắt AB tại E.Đoạn MC cắt đường cao AH tại F.Kéo dài CA cắt BM ở D.Đường thẳng BF cắt đường thẳng AM tại N.
a)C/M: OM//CD và M là trung điểm của BD
b)C/M: EF//BC
c)C/M: HA là tia p/g của góc MHN
d)Cho OM=BC=4cm.Tính chu vi tam giác ABC