Để \(B=-1\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=-1\)
\(\Leftrightarrow\dfrac{\sqrt{x}-1+\sqrt{x}+1}{\sqrt{x}+1}=0\\ \Leftrightarrow2\sqrt{x}=0\\ \Leftrightarrow x=0\left(tmdk\right)\)
Vậy \(x=0\) thì \(B=-1\)
Để \(B=-1\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=-1\)
\(\Leftrightarrow\dfrac{\sqrt{x}-1+\sqrt{x}+1}{\sqrt{x}+1}=0\\ \Leftrightarrow2\sqrt{x}=0\\ \Leftrightarrow x=0\left(tmdk\right)\)
Vậy \(x=0\) thì \(B=-1\)
1) Cho biểu thức B=(\(\dfrac{1}{3-\sqrt{x}}\)-\(\dfrac{1}{3+\sqrt{x}}\)) . \(\dfrac{3+\sqrt{x}}{\sqrt{x}}\) ( với x>0; x≠9)
a) Rút gọn biểu thức B
b) Tìm các giá trị của x để B>0
Với \(x>0\) cho 2 biểu thức \(A=\dfrac{2+\sqrt{x}}{\sqrt{x}}\) và \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)
1) Tính giá trị của biểu thức A khi \(x=64\)
2) Rút gọn biểu thức B
3) Tìm x để \(\dfrac{A}{B}>\dfrac{3}{2}\)
Cho biểu thức A = \(\dfrac{\sqrt{x}+2}{\sqrt{x}-3};B=\dfrac{\sqrt{x}+5}{\sqrt{x}+1}+\dfrac{\sqrt{x}-7}{1-x}\) với x ≥ 0;x ≠ 1;x ≠ 9
a, Tính giá trị biểu thức A khi x = 16
b,Chứng minh rằng: B = \(\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)
c, Tìm các giá trị x để \(\dfrac{4A}{A}\le\dfrac{x}{\sqrt{x}-3}\)
Cho biểu thức A = \(\left(\dfrac{x-\sqrt{x}+1}{x\sqrt{x}+1}-\dfrac{1}{x-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}\) với x>0 x\(\ne\)1
a, rút gọn biểu thức b, tìm giá trị của x để A \(\le\dfrac{3}{\sqrt{x}}\)
Cho A = \(\dfrac{\sqrt{x}}{2\sqrt{x}+1}\); B = \(\dfrac{1}{2\sqrt{x}+1}\)(ĐKXĐ: x ≥ 0; x ≠ \(\dfrac{1}{4}\)). Tìm x để biểu thức: P = 5A + B nguyên.
Cho hai biểu thức A=\(\dfrac{\sqrt{x}}{\sqrt{x+6}}\) và B=\(\dfrac{4}{x-1}+\dfrac{\sqrt{x}+3}{\sqrt{x}+1}-\dfrac{5}{1-\sqrt{x}}\)(với x≥0,x≠1)
a.tính giá trị biểu thức a khi x=4
b.rút gọn P
C.VỚI p=a.b ,tìm giá trị của x để p<0
Cho hai biểu thức A=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)và B=(\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1})_{ }\div\dfrac{\sqrt{x}}{\sqrt{x}-1}\) (X>0,X≠1)
a.rút gọn biểu thức B
B.Tìm x để giá trị của A.B<0
1.thực hiện phép tính: \(\sqrt{4-2\sqrt3} \)-\(\dfrac{2}{\sqrt3+1}\)+\(\dfrac{\sqrt{3} -3}{\sqrt{3}-1}\)
2.cho biểu thức B=\(\dfrac{\sqrt{x}}{\sqrt{x}-3} \) + \(\dfrac{2\sqrt{x}-24}{x-9}\) với x ≥ 0, x≠9
a) rút gọn B
b) tìm giá trị của x để biểu thức B=5
cho biểu thức
\(B=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-244}{x-9}\)
a) chứng minh rằng B=\(\dfrac{\sqrt{x}+8}{\sqrt{x}+3}\)
b) Tìm giá trị của x để biểu thức \(\dfrac{\sqrt{x-1}}{\sqrt{x}+2}=0\)