Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
wary reus

Cho biểu thức A=\(\sqrt{^2x+2\sqrt{^2x-1}-}\sqrt{^2x-2\sqrt{^2x-1}}\)

a, Với giá trị nào của x thì A có nghĩa

b, Tính A nếu x>\(\sqrt{2}\)

Trần Việt Linh
28 tháng 7 2016 lúc 16:53

a)ĐK:\(\begin{cases}x^2-1\ge0\\x^2-2\sqrt{x^2-1}\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x^2\ge1\\x^2\ge2\sqrt{x^2-1}\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x^4\ge4\left(x^2-1\right)\end{cases}\)

\(\Leftrightarrow\begin{cases}x\ge1\\x^4-4x^2+4\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\\left(x^2-2\right)^2\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x^2-2\ge0\end{cases}\)

\(\Leftrightarrow\begin{cases}x\ge1\\x^2\ge2\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge\sqrt{2}\end{cases}\)\(\Leftrightarrow x\ge\sqrt{2}\)

b)Có \(A=\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}\)

\(=\sqrt{\left(x^2-1\right)+2\sqrt{x^2-1}+1}-\sqrt{\left(x^2-1\right)-2\sqrt{x^2-1}+1}\)

\(=\sqrt{\left(\sqrt{x^2-1}+1\right)^2}-\sqrt{\left(\sqrt{x^2-1}-1\right)^2}\)

\(=\sqrt{x^2-1}+1-\left|\sqrt{x^2-1}-1\right|\)

Vói \(x\ge1\) thì A=\(\sqrt{x^2-1}+1-\left(\sqrt{x^2-1}-1\right)=\sqrt{x^2-1}+1-\sqrt{x^2-1}+1=2\)

Với \(\sqrt{2}< x< 1\) thì 

                \(A=\sqrt{x^2-1}+1-\left(1-\sqrt{x^2-1}\right)=\sqrt{x^2-1}+1-1+\sqrt{x^2-1}=2\sqrt{x^2-1}\)


Các câu hỏi tương tự
NT Ánh
Xem chi tiết
Linh Chi
Xem chi tiết
Cao Hà Phương
Xem chi tiết
Lee Je Yoon
Xem chi tiết
satoh nguyễn
Xem chi tiết
Tống Thanh Hà
Xem chi tiết
Lee Je Yoon
Xem chi tiết
Ngọc Huyền
Xem chi tiết
Nguyễn Ngọc Huyền Anh
Xem chi tiết