1: \(A=\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\cdot\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)
ĐKXĐ: a>0; a<>1
Ta có: \(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\)
\(=\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\)
\(=\frac{a+\sqrt{a}+1-\left(a-\sqrt{a}+1\right)}{\sqrt{a}}=\frac{2\sqrt{a}}{\sqrt{a}}=2\)
Ta có: \(\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)
\(=\frac{\left(\sqrt{a}+1\right)^2+\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{a+2\sqrt{a}+1+a-2\sqrt{a}+1}{a-1}\)
\(=\frac{2a+2}{a-1}\)
Ta có: \(A=\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\cdot\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)
\(=2+\frac{a-1}{\sqrt{a}}\cdot\frac{2a+2}{a-1}=2+\frac{2a+2}{\sqrt{a}}=\frac{2a+2\sqrt{a}+2}{\sqrt{a}}\)
2: A=7
=>\(\frac{2a+2\sqrt{a}+2}{\sqrt{a}}=7\)
=>\(2a+2\sqrt{a}+2=7\sqrt{a}\)
=>\(2a-5\sqrt{a}+2=0\)
=>\(\left(2\sqrt{a}-1\right)\left(\sqrt{a}-2\right)=0\)
=>\(\left[\begin{array}{l}2\sqrt{a}-1=0\\ \sqrt{a}-2=0\end{array}\right.\Rightarrow\left[\begin{array}{l}\sqrt{a}=\frac12\\ \sqrt{a}=2\end{array}\right.\Rightarrow\left[\begin{array}{l}a=\frac14\left(nhận\right)\\ a=4\left(nhận\right)\end{array}\right.\)
3: A>6
=>\(\frac{2a+2\sqrt{a}+2}{\sqrt{a}}>6\)
=>\(\frac{a+\sqrt{a}+1}{\sqrt{a}}>3\)
=>\(\frac{a+\sqrt{a}+1-3\sqrt{a}}{\sqrt{a}}>0\)
=>\(\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}}>0\) (luôn đúng với mọi a thỏa mãn ĐKXĐ)