a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b: Ta có: \(A=\left(\dfrac{\sqrt{x}+1}{x-1}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\dfrac{2}{\sqrt{x}-1}\)