\(A=\dfrac{3x-3}{x-2}\in Z\left(x< 1\right)\)
\(\Leftrightarrow3x-3⋮x-2\)
\(\Leftrightarrow3x-3-3x+6⋮x-2\)
\(\Leftrightarrow3⋮x-2\)
\(\Leftrightarrow x-2\in U\left(3\right)=\left\{-1;1;-3;3\right\}\)
\(\Leftrightarrow x\in\left\{1;3;-1;5\right\}\)
\(\Leftrightarrow x\in\left\{-1\right\}\left(x< 1\right)\)
Vậy \(x\in\left\{-1\right\}\) để A là số nguyên
`A = \frac{3x - 3}{x - 2} \in \mathbb{Z} (x < 1)`
`\Leftrightarrow 3x - 3 ⋮ x - 2`
`\Leftrightarrow 3x - 3 - 3x + 6 ⋮ x - 2`
`\Leftrightarrow 3 ⋮ x - 2`
`\Leftrightarrow x - 2 \in U(3) = \{-1;1;-3;3\}`
`\Leftrightarrow x \in \{1;3;-1;5\}`
`\Leftrightarrow x \in \{-1\} (x < 1)`
`\text{Vậy } x \in \{-1\} \text{ để A là số nguyên}`
𝕙𝕒𝕖𝕟𝕘𝟚𝟘𝟙𝟘