a-b=2 nên (a-b)^2=4
=>a^2+b^2-2ab=4
=>8-2ab=4
=>2ab=8-4=4
=>ab=2
K=(a-2b)(2a-b)
=2a^2-ab-4ab+2b^2
=2(a^2+b^2)-5ab
=2*8-5*2
=16-10=6
a-b=2 nên (a-b)^2=4
=>a^2+b^2-2ab=4
=>8-2ab=4
=>2ab=8-4=4
=>ab=2
K=(a-2b)(2a-b)
=2a^2-ab-4ab+2b^2
=2(a^2+b^2)-5ab
=2*8-5*2
=16-10=6
Cho biết tồn tại 2 số thực a,b thỏa a^2 + b^2 = 8 và ab = -2. Tính N = (a^2 - b^2)^2
Cho các số thực a, b, c thỏa mãn a^2 + b^2 + c^2 = 9. Tính giá trị biểu thức S = (2a + 2b -c )^2 + (2b + 2c -a)^2 + (2c + 2a -b)^2
Cho 2 số thực a,b thỏa mãn: lal khác lbl va ab khac 0 thoa man \(\frac{a-b}{a^2+ab}+\frac{a+b}{a^2-ab}=\frac{3a-b}{a^2-b^2}\)
Tính P=\(\frac{a^3+2a^2b+2b^3}{2a^3+ab^2+2b^3}\)
Cho biết tồn tại số thực a,b thỏa a + b = 1 và a2 + b2 = 3. Tính giá trị của A = a3 + b3
Cho a,b,c thỏa mãn:
2ab(2b-a)-2ac(c-2a)-2bc(b-2c)=7abc
CMR Tồn tại 1 số bằng 2 số kia
Cho hai số thực a,ba,b thỏa mãn \(a^2+4ab-5b^2=0\)(a≠b,a≠−b) Tính giá trị của biểu thức
Q=\(\dfrac{2a-b}{a-b}+\dfrac{3a-2b}{a+b}\)
Cho a, b và c là các số thực dương thỏa mãn
a^2 + b^2 + c^2 +2abc = 1
CMR a^2b^2 +b^2c^2 + c^2a^2 ≥ 12a^2b^2c^2
Cho biết tồn tại hai số thực a, b khác 0 thỏa ab + b = -1 và a2b2 + 1 = 3b2. Tính giá trị của biểu thức A = \(\frac{a^3b^3+1}{b^3}\)
cho các số thực a,b thỏa mãn a^3 - 2b^3 = ab(a - 2b). Tìm GTNN của biểu thức P = a^2 + b^2 + 2a + 4b + 10