Lời giải:
Để $A\cap B=\varnothing$ thì: \(\left[\begin{matrix}
m+1\leq 1\\
m\geq 4\end{matrix}\right.\Leftrightarrow \left[\begin{matrix}
m\leq 0\\
m\geq 4\end{matrix}\right.\)
Do đó để $A\cap B\neq \varnothing$ thì $m\in (0;4)$
Lời giải:
Để $A\cap B=\varnothing$ thì: \(\left[\begin{matrix}
m+1\leq 1\\
m\geq 4\end{matrix}\right.\Leftrightarrow \left[\begin{matrix}
m\leq 0\\
m\geq 4\end{matrix}\right.\)
Do đó để $A\cap B\neq \varnothing$ thì $m\in (0;4)$
cho 2 tập khác rỗng A=(m-1;4] và B=(-2;2m+2) với m thuộc R.Xác định m để B là con của A Giúp với ạ
1, Cho m là một tham số thực và hai tập hợp A =[ 1-2m; m+3], B = {x thuộc R| x>= 8-5m}. Tìm tất cả các giá trị m để A giao B= rỗng 2, Cho các tập hợp khác rỗng A= ( âm vô cực; m) và B=[ 2m - 2; 2m +2]. Tìm m thuộc R để CR (A hợp B) là một khỏang
Cho 2 tập khác rỗng A = (m − 1; 4]; B = (−2; 2m + 2), m ∈ R. Tìm m để A ⊂ B.
A. 1 < m < 5
B. m > 1
C. −1 ≤ m < 5
D. −2 < m < −1
Cho hai tập khác rỗng A = (m−1; 4]; B = (−2; 2m + 2), m ∈ R. Tìm m để A ∩ B ≠ ∅
A. −2 < m < 5
B. m > −3.
C. −1 < m < 5.
D. 1 < m < 5
Cho tập hơp A=[-2;4) B=(0;5] tìm a giao b ahopwj b a hiệu b b hiệu a B. Cho c=(2m-1; + vô cực) vơi m là tham số thực tìm m để a giao b rỗng
Cho hai tập hợp: A = [m;m + 1] và B = [0;3). Tìm tất cả các giá trị thực của tham số m để A giao B = rỗng .
Câu 36. Cho các tập hợp khác rỗng [ m−1; m+3 /2 ] và B=(âm vô cùng ; -3) hợp [3;dương vô cùng). Gọi S là tập hợp các giá nguyên dương của m để A giao B ≠ ∅ . Tìm số tập hợp con của S .
Cho các tập hợp A=(2;17], B=(m-9;m). Tìm m để tập hợp A giao B là tập rỗng