\(a,A=\dfrac{12n+1}{2n+3}\) là một phân số khi: \(12n+1\in Z,2n+3\in Z\) và \(2n+3\ne0\)
\(\Leftrightarrow n\in Z\) và \(n\ne-1,5\)
\(b,A=\dfrac{12n+1}{2n+3}=-6\dfrac{17}{2n+3}\)
A là số nguyên khi \(2n+3\inƯ\left(17\right)\Leftrightarrow2n+3\in\left\{\pm1;\pm17\right\}\)
\(\Leftrightarrow n\in\left\{-10;-2;-1;7\right\}\)
a: Để A là phân số thì 2n+3<>0
hay n<>-3/2
b: Để A là số nguyên thì \(12n+8-7⋮2n+3\)
\(\Leftrightarrow2n+3\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{-1;-2;2;-5\right\}\)