cho a^2+b^2+c^2 <= 3b nhé
cho a^2+b^2+c^2 <= 3b nhé
cho cac so thuc duong a b c thoa a^2+b^2+c^2>=3 chung minh
\(\frac{\left(a+1\right)\left(b+2\right)}{\left(b+1\right)\left(b+5\right)}+\frac{\left(b+1\right)\left(c+2\right)}{\left(c+1\right)\left(c+5\right)}+\frac{\left(c+1\right)\left(a+2\right)}{\left(a+1\right)\left(a+5\right)}\ge\frac{3}{2}\)
cho a,b,c > 0 thỏa mãn \(a^2+b^2+c^2=3\) . Cmr:
\(\left(\frac{4}{a^2+b^2}+1\right)\left(\frac{4}{b^2+c^2}+1\right)\left(\frac{4}{c^2+a^2}+1\right)\ge3\left(a^2+b^2+c^2\right)\)
Cho a,b,c >0 abc=1. CMR \(\frac{a^4}{b^2\left(c+a\right)}+\frac{b^4}{c^2\left(a+b\right)}+\frac{c^4}{a^2\left(b+c\right)}\ge\frac{a+b+c}{2}\)
Cho a,b,c>0.CMR:
\(\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}+\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}\ge16\)
Help!
với ∀a,b,c thuộc R, CMR:
\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\ge2+\frac{2\left(a+b+c\right)}{\sqrt[3]{abc}}\)
cho a, b, c là các số dương cm \(\left(a^3+b^3+c^3\right)\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\).\(\ge\frac{3}{2}\left(\frac{b+c}{a}+\frac{c+a}{b}\frac{a+b}{c}\right)\)
Cho a,b,c là các số thực. CMR:
\(\frac{-1}{8}\le\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(1-ab\right)\left(1-bc\right)\left(1-ca\right)}{\left(1+a^2\right)^2\left(1+b^2\right)^2\left(1+c^2\right)^2}\le\frac{1}{8}\).
Cho a,b,c>0.CMR:
\(\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{\left(a+b+c\right)^3}{abc}\ge28\)
Cho a,b,c >0 TM\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}=2\). CMR:\(ab+bc+ca\ge12\)
Help me gấp với các god Trần Thanh Phương?Amanda?tthLightning FarronNguyễn Việt LâmAkai Haruma
cho a,b c đôi một khác nhau. Cmr:
\(\frac{\left(a+b\right)^2}{\left(a-b\right)^2}+\frac{\left(b+c\right)^2}{\left(b-c\right)^2}+\frac{\left(c+a\right)^2}{\left(c-a\right)^2}\ge2\)
1) \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
2) với \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=3\end{matrix}\right.\) chứng minh \(\frac{a^3}{b\left(2c+a\right)}+\frac{b^3}{c\left(2a+b\right)}+\frac{c^3}{a\left(2b+c\right)}\ge1\)