Ta có :
\(a+b+c+d=0\)
\(\Rightarrow c=-\left(a+b\right)\)
Do đó :
\(\left(a+b\right)^3=-\left(c+d\right)^3\)
\(\Rightarrow a^3+b^3+3ab\left(a+b\right)\)
\(=-c^3-d^3-3cd\left(c+d\right)\)
\(\Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)-3cd\left(c+d\right)\)
Vì \(a+b=-\left(c+d\right)\)
\(\Rightarrow3ab\left(c+d\right)-3cd\left(c+d\right)=3\left(c+d\right)\left(ab-cd\right)\)