cho a,b,c>0
CMR: a^3/b + b^3/c + c^3/a >= ab + bc + ca
cho a + b + c = 0 . CM : M = N = P M = a ( a + b ) ( a + c ) N = b ( b + c ) ( a + b ) P = c ( c + b ) ( a + c )
Cho a+b+c=0, chứng minh M=N=P
M=a(a+b)(a+c); N=b(b+c)(b+a); P=c(c+a)(c+b)
Cho a+b+c=0.chứng minh rằng M=N=P với:
M= a(a+b)(a+c) ; N= b(b+c)(b+a) ; P= c(c+a)(c+b)
Cho a + b + c = 0. CMR: M = N = P
M = a(a + b)(a + c)
N = b(b + c)(b + a)
P = c(c + a)(c + b)
Cho ba số a, b, c đề khác 0 và a2 + b2 + c2 - ab - bc - ca = 0
CMR: ( 1 + \(\dfrac{a}{b}\) ) ( 1 + \(\dfrac{b}{c}\) ) ( 1 + \(\dfrac{c}{a}\) ) = 8
cho a+b+c=0.chứng minh rằng M=N=P với
M=a(a+b)(a+c) : N=b(b+c)(b+c) : P=c(c+a)(c+b)
giúp mình cái:
Cho a + b + c = 0. Chứng minh rằng M = N = P với:
.M = a ( a + b ) ( a + c ); N = b ( b + c ) ( b + a ); P = c ( c + a ) ( c + b ).
Cho a+b+c=0. Chứng minh rằng M=N=P với:
M=a(a+b)(a+c)
N=b(b+c)(b+a)
P=c(c+a)(c+b)