Chắc là \(P=\dfrac{1}{1+2x}+\dfrac{1}{1+2y}+\dfrac{1}{1+2z}\)
Do \(xyz=1\), đặt \(\left(x;y;z\right)=\left(\dfrac{b}{a};\dfrac{c}{b};\dfrac{a}{c}\right)\)
\(\Rightarrow P=\dfrac{1}{1+\dfrac{2b}{a}}+\dfrac{1}{1+\dfrac{2c}{b}}+\dfrac{1}{1+\dfrac{2a}{c}}=\dfrac{a}{a+2b}+\dfrac{b}{b+2c}+\dfrac{c}{c+2a}\)
\(P=\dfrac{a^2}{a^2+2ab}+\dfrac{b^2}{b^2+2bc}+\dfrac{c^2}{c^2+2ac}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ac}=1\)
\(P_{min}=1\) khi \(a=b=c\) hay \(x=y=z=1\)
Ủa sao giả thiết là a;b;c mà biểu thức lại là x;y;z vậy em?