a+b+c=0\(\Rightarrow\)a+c=-b và b+c=-a
\(a^3+a^2c-abc+b^2c+b^3=a^2\left(a+c\right)+b^2\left(b+c\right)-abc=-a^2b-b^2a-abc\)\(=-ab\left(a+b+c\right)=0\)
a+b+c=0\(\Rightarrow\)a+c=-b và b+c=-a
\(a^3+a^2c-abc+b^2c+b^3=a^2\left(a+c\right)+b^2\left(b+c\right)-abc=-a^2b-b^2a-abc\)\(=-ab\left(a+b+c\right)=0\)
Cho a + b + c = 0. Chứng minh : (a2 + b2 + c2 )/2 * (a3 + b3 + c3 )/3 = (a5 + b5 + c5 )/5
cho a,b,c là độ dài 3 cạnh của tam giác , chứng minh :
a3+b3+c3+2abc < a(b2+c2)+b(a2+c2)+c(a2+b2) < a3+b3+c3+3abc
mình cần gấp lắm , mn giúp mình với
2. Chứng minh rằng:
a. a3+ b3 = (a + b)3 - 3ab (a + b)
b. a3+ b3 + c3 - 3abc = (a + b + c) (a2 + b2 c2 - ab - bc - ca)
Cho a 3 + b 3 + c 3 = 3 a b c và a + b + c ≠ 0.Tính giá trị của biểu thức A = a 2 + b 2 + c 2 ( a + b + c ) 2
Cho a > 0, b > 0, nếu a < b, hãy chứng tỏ: a 2 < b 2 và a 3 < b 3
chứng minh :
a3 +b3 =(a+b).(a2 -ab +b2)
a3 -b3 =(a-b).(a2 +ab +b2)
Phân tích thành nhân tử :
a. (a + b)(a2 - b2) + (b - c)(b2 - c2) + (c + a)(c2 - a2)
b. a3 (b - c) + b3(c - a) + c3 (a - b)
c. a3 (c - b2) + b3 (a -c3) + c3 (b - a2) + abc(abc - 1)
d.a ( b + c )2 ( b - c ) + b ( c + a )2 (c - a ) + c ( a + b )2 (a - b )
e. a ( b + c )3 + b ( c - a )3 + c ( a - b )3
f. a2 b2 ( a - b ) + b2 c2 ( b - c ) + c2 a2( c - a )
g. a ( b2 + c2) + b ( c2 + a2 ) + c ( a2 + b2) - 2abc - a3 - b3 - c3
h. a4 ( b - c ) + b4 ( c - a ) + c4 ( a - b )
Chứng minh các hằng đẳng thức sau:
a) (a2+b2)(c2+d2)=(ac+bd)2+(ad-bc)2
b) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
(1) (a+b+c)2=a2+b2+c2+2ab+2bc+2ac(a+b+c)2=a2+b2+c2+2ab+2bc+2ac
(2) (a+b−c)2=a2+b2+c2+2ab−2bc−2ac(a+b−c)2=a2+b2+c2+2ab−2bc−2ac
(3) (a−b−c)2=a2+b2+c2−2ab−2ac+2bc(a−b−c)2=a2+b2+c2−2ab−2ac+2bc
(4) a3+b3=(a+b)3−3ab(a+b)a3+b3=(a+b)3−3ab(a+b)
(5) a3−b3=(a−b)3+3ab(a−b)a3−b3=(a−b)3+3ab(a−b)
(6) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
(7) a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)
(8) (a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)
(9) (a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2(a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2
(10) (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc
(11) ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33
(12)ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3
Chứng minh giùm mik hằng đẳng thức kia vs
Cho a, b, c > 0 . Chứng minh rằng a3 +b3 +c3 >=3abc.