a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)
a) Xét ∆ABC và ∆HBA, ta có:
<A=<H=90°
<B chung
⟹∆ABC∼∆HBA(g.g)
b) Áp dụng định lý py-ta-go vào ∆ABC(<A=90°(gt)) , ta có:
BC2 =AB2+AC2
=82+62=64+36=100
⟹BC=√100=10cm
Ta có: AC/HA=BC/AB ( Vì ∆ABC∼∆HBA(CM ở a))
⟹6/HA=10/8⟹HA=6*8/10=4,8cm