Ta có:
\(ab-ac+bc-c^2=a.\left(b-c\right)+c.\left(b-c\right)=\left(a+c\right)\left(b-c\right)=-1\)
Tích trên là âm nên a+c và b-c trái dấu
Ư(1)={-1;1}
Như vậy các số a+c và b-c là 2 số đối nhau
TH1: Giả sử a=b => b+c= -(b-c)
=> b+c=-b+c
=> b= -b
=> b=0
=> a+c=0-c=-c
=> a= -c+c=0
Như vậy a=b và a cũng là số đối của b
TH2: a khác b
Có: a+c và b-c, một trong 2 là 1 và một trong 2 là -1
=> Tổng của a+c và b-c là 1+(-1)=0
=> a+b=0
a khác b nên a, b là 2 số đối nhau.
Vậy a, b là 2 số đối nhau.