Cho a,b,c là các số thực thuộc khoảng (0:1) thỏa mãn abc=(1-a)(1-b)(1-c)
Tìm GTNN của P=a+b+c\(+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
cho a,b,c là 3 số thực số thực dương và thỏa mãn: abc=1
Tìm GTLN của D = \(\dfrac{a}{b^4+c^4+a}\)+\(\dfrac{b}{a^4+c^4+b}\)+\(\dfrac{c}{a^4+b^4+c}\)
Cho a, b là các số thực dương thỏa mãn \(a+b\le1\). Tìm GTNN của \(A=\dfrac{a}{b+1}+\dfrac{b}{a+1}+\dfrac{1}{a+b}\)
Với a,b,c là các số thực dương thỏa mãn đẳng thức \(6a+3b+2c=abc\)
➢Tìm giá trị lớn nhất của \(Q=\dfrac{1}{\sqrt{a^2+1}}+\dfrac{2}{\sqrt{b^2+4}}+\dfrac{3}{\sqrt{c^2+9}}\)
Cho các số thực dương a, b, c thỏa mãn a ≥ b + c. Tìm GTNN của biểu thức:
P = \(\dfrac{a}{b+c}+\dfrac{b}{a+2c}+\dfrac{c}{a+2b}\)
1. Cho \(x,y,z>1\) và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2\) . Cmr \(\sqrt{x+y+z}\ge\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}\)
2. Cho a,b,c là các số thực dương thỏa mãn \(a+b+c=6\) . Tính Min của \(A=\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\)
3. Cho a,b,c là các số thực dương thỏa mãn \(a^2+b^2+c^2=1\) . Tính min của \(B=a+b+c+\dfrac{1}{abc}\)
4. Cho a,b,c là các số thực dương thỏa mãn \(a+b+c+ab+bc+ac=6\) . Tính Max của \(C=abc\)
5. Cho a,b,c là các số thực dương thỏa mãn \(a+b+c=2\) . Tính Max của \(D=abc\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Giúp mk nhanh nhé mn ơi
Cho a,b là các só thực dương thỏa mãn a+b=2. Tìm GTNN của
A= \(a^3+b^3+\dfrac{6}{a^2+b^2}+3ab\)
cho a,b,c là các số thực dương thỏa mãn a+b+c=1. tìm gtnn của R=\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Cho a;b>0 và a+b\(\le1\). Tìm GTNN của
C=\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{4}{ab}+3ab\)