Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
l҉o҉n҉g҉ d҉z҉

Cho a,b,c là các số thực dương. Chứng minh rằng :

\(\dfrac{a}{\sqrt{b^2+\dfrac{bc}{4}+c^2}}+\dfrac{b}{\sqrt{c^2+\dfrac{ca}{4}+a^2}}+\dfrac{c}{\sqrt{a^2+\dfrac{ba}{4}+b^2}}\ge2\)

Nguyễn Việt Lâm
14 tháng 4 2021 lúc 0:13

\(\Leftrightarrow\dfrac{a}{\sqrt{4b^2+bc+4c^2}}+\dfrac{b}{\sqrt{4c^2+ca+4a^2}}+\dfrac{c}{\sqrt{4a^2+ab+4b^2}}\ge1\)

Ta có:

\(\sum\left(\dfrac{a}{\sqrt{4b^2+bc+4c^2}}\right)^2\sum a\left(4b^2+bc+4c^2\right)\ge\left(a+b+c\right)^3\)

Nên ta chỉ cần chứng minh:

\(\dfrac{\left(a+b+c\right)^3}{a\left(4b^2+bc+4c^2\right)+b\left(4c^2+ac+4a^2\right)+c\left(4a^2+ab+4b^2\right)}\ge1\)

\(\Leftrightarrow\dfrac{\left(a+b+c\right)^3}{4a\left(b^2+c^2\right)+4b\left(c^2+a^2\right)+4c\left(a^2+b^2\right)+3abc}\ge1\)

\(\Leftrightarrow a^3+b^3+c^3+3abc\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\) (đúng theo Schur bậc 3)


Các câu hỏi tương tự
Nguyễn An
Xem chi tiết
Nguyễn Thị Huyền Diệp
Xem chi tiết
ILoveMath
Xem chi tiết
minh nguyen
Xem chi tiết
Hoàng Anh Thắng
Xem chi tiết
Ngáo Ngô
Xem chi tiết
Lê Đức Lương
Xem chi tiết
friknob
Xem chi tiết
Lee Yeong Ji
Xem chi tiết