cho a, b, c là các số dương thỏa mãn điều kiện a+b+c=1 tìm GTNN của biểu thức
\(A=\frac{\left(1+a\right).\left(1+b\right).\left(1+c\right)}{\left(1-a\right).\left(1-b\right)\left(1-c\right)}\)
Cho a,b,c không đồng thời bằng 0 thỏa mãn \(a^2+b^2+c^2=2\) và ab+bc+ca=1. Tìm GTLN,GTNN của a,b,c
cho x, y, z lớn hơn hoặc bằng 0 thỏa mãn điều kiện x+y+z = a
a, tìm GTLN của A= xy+yz+xz
b, tìm GTNN của B= x^2+y^2+z^2
Cho a,b,c là các số thỏa mãn các điều kiện:-\(-1\le a,b,c\le2\) và a+b+c=0. chứng minh: \(a^2+b^2+c^2\le6\)
Tìm GTLN của
\(P=\dfrac{a}{\sqrt{1+2bc}}+\dfrac{b}{\sqrt{1+2ca}}+\dfrac{c}{\sqrt{1+2ab}}\)
với a,b,c là các số lớn hơn 0 thỏa mãn điều kiện : \(a^2+b^2+c^2=1\)
cho các số thực dương a,b,c thỏa mãn: \(a^2+b^2+c^2=12\)
Tìm GTNN của: P=\(a^3+b^3+c^3\)
cho x, y, z lớn hơn hoặc bằng 0 thỏa mãn điều kiện x+y+z = a
a, tìm GTLN của A= xy+yz+xz
b, tìm GTNN của B= x^2+y^2+z^2
ai nhanh mik tick
cho x, y, z lớn hơn hoặc bằng 0 thỏa mãn điều kiện x+y+z = a
a, tìm GTLN của A= xy+yz+xz
b, tìm GTNN của B= x^2+y^2+z^2
ai nhanh mik tick
cho a, b, c là các só thực dương thỏa mãn a+b+c=1. tìm GTNN của bt sau
\(P=\frac{a}{9b^2+1}+\frac{b}{9c^2+1}+\frac{c}{9a^2+1}\)