a: Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
Do đó: ΔAHB=ΔAHC
b: Xét tứ giác AHCD có
M là trung điểm của AC
M là trung điểm của HD
Do đó: AHCD là hình bình hành
Suy ra: AD=CH
hay AD=BH
a: Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
Do đó: ΔAHB=ΔAHC
b: Xét tứ giác AHCD có
M là trung điểm của AC
M là trung điểm của HD
Do đó: AHCD là hình bình hành
Suy ra: AD=CH
hay AD=BH
Cho tam giác ABC có AB = AC và AC > BC> Gọi H là trung điểm cạnh BC
a) Chứng minh : tam giác AHB = tam giác AHC
b) Trên tia đối của tia HA lấy điểm M sao cho HM = HA. CMR AB//MC
c) Từ B vẽ đường thẳng vuông góc với AC tại K, trên tia đối của tia KC lấy điểm D sao cho KD = KC. Chứng minh : Bk là tia phân giác của góc DBC
d) Trên tia đối của tia BA lấy điểm E sao cho BE = AD. Chứng minh CE = CA
Cho tam giác ABC vuông tại A, AB < AC, đường cao AH ( H thuộc BC). Trên tia tia đối của tia HA lấy M sao cho HM = HA. Trên tia đối của tia HB lấy D sao cho HD = HB
a) Chứng minh: tam giác AHB = tam giác MHD
b) Chứng minh: AB//MD; MD vuông góc AC
c) Gọi E là trung điểm của AB, F là trung điểm của MD. Chứng minh: E, H, F thẳng hàng
Cho tam giác ABC nhọn có AB=AC. Gọi H là trung điểm BC
a) Chứng minh tam giác AHB = tam giác AHC và AH vuông tại BC.
b) Trên tia đối của tia HA lấy điểm M sao cho HM=HA .Chứng minh tam giác AHB = tam giác MHC và MC // AB
Cho tam giác ABC vuông tại A, có AB = AC. Gọi H là trung điểm của BC
a)Chứng minh tam giác AHB = tam giác AHC
b)Chứng minh góc BAH = góc ACH
c)Trên tia đối của tia AH lấy điểm E sao cho EA = BC, trên tia đối của tia AC lấy điểm F sao cho CF = AB. Chứng minh BE = BF và BE vuông góc với BF
cho tam giác abc cân tại a h là trung điểm của bc. kẻ hm vuông góc ab ( m thuộc ab), hn vuông góc với ac (n thuộc ac)
a, chứng minh tam giác ahb = tam giác ahc
b, chứng minh tam giác hmn cân
c, chứng minh mn//bc
d, gọi e là giao điểm của ab và hn, f là giao điểm của ac và hm, i là giao điểm của ah và ef, chứng minh điểm h cách đều 3 cạnh tam giác mni
Cho tam giác ABC có AB = AC . Gọi M là trung điểm của BC . Trên AB và AC lấy D và E sao cho AD = AE
a) Chứng minh : tam giác ABM = tam giác ACM
b) Chứng minh : AM vuông góc với BC
c) Chứng minh : tam giác ADM = tam giác AEM
d) Gọi H là trung điểm của EC . Trên tia đối của tia MH lấy F sao cho HM = HF . Chứng minh D , E , F thẳng hàng
Cho tam giác ABC vuông tại A, đường cao AH. Trên tia đối của tia AH lấy một điểm D sao cho AH = AD. Gọi E là trung điểm của đoạn thẳng Hc, F là giao điểm của DE và AC.
a) Chứng minh H, F và trung điểm M của đoạn thẳng DC là 3 điểm thẳng hàng
b) Chứng minh HM=12DC
c) Gọi P là trung điểm của AH, Chứng minh EP⊥AB,BP⊥DC,CP⊥DB
Cho tam giác ABC nhọn có AB = AC. Gọi H là trung điểm BC.
a) Chứng minh AAHB = AAHC.
b). Trên tia đối của tia HA lấy điểm M sao cho HM = HA. Chứng minh AAHB = AMHC
và MC // AB.
c). Trên tia đối của tia CM, lấy điểm N sao cho C là trung điểm MN. Gọi O là giao
điểm của AC và HN, OM cắt AN tại K. Chứng minh: 2OK = OM
Cho tam giác nhọn ABC có M là trung điểm của đoạn thẳng AC . Trên tia đối của tia MB lấy D sao cho MB = MD
a, Chứng minh tam giác ABM = tam giác CDM
b, Chứng minh : AB song song với CD
c, Gọi N là trung điểm của đoạn thẳng BC , đường thẳng MN cắt AD tại E . Chứng minh E là trung điểm của đoạn thẳng AD