\(a,BC^2=AB^2+AC^2\Rightarrow\Delta ABC\) vuông tại A
\(b,\sin B=\dfrac{AC}{BC}=\dfrac{3}{5}\approx\sin37^0\Rightarrow\widehat{B}\approx37^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}\approx53^0\\ AH=\dfrac{AB\cdot AC}{BC}=3,6\left(cm\right)\\ c,S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot6\cdot4,5=13,5\)
a. \(\left\{{}\begin{matrix}sinC=\dfrac{AB}{BC}=53^0\\sinB=\dfrac{AC}{BC}\approx37^0\end{matrix}\right.\)
\(\Rightarrow A=180^0-\left(C+B\right)=180^0-\left(53^0+37^0\right)=90^0\left(tong3goctrong1tg\right)\)
Vậy tg ABC vuông tại A
a. cm △ABC ⊥ tại A:
Xét: 62 + 4,52 = 7,52
=> AB2 + AC2 = BC2
=> △ABC ⊥ tại A ( Pi-ta-go đảo)
b. sinB= AC/BC
=> sinB= 4,5/7,5 = 0,6
=>∠B = 38,87
góc C tương tự nhé!
Xét △ABC vuông tại A, đường cao AH:
=> 1/AB2 + 1/AC2 = 1/AH2 ( hệ thức lượng)
=> 1/62 + 1/4,52 = 1/AH2
AH = 3,6 ( cm)
c. S△ABC= \(\dfrac{AB.AC}{2}\)
= \(\dfrac{6.4,5}{2}\)
= 13,5 ( cm2)