Bài 1: Nhân đơn thức với đa thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Tuyền

cho a+b+c =2018

1/a+1/b+1/c =1/2018

tính (a^2015+b^2015)(a^2017+b^2017)(a^2019+b^2019)

Nguyễn Việt Lâm
25 tháng 3 2019 lúc 12:45

\(a;b;c\ne0\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2018}=\frac{1}{a+b+c}\)\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a+b=0\\ab=-c\left(a+b+c\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\ab+ac+bc+c^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\\left(a+c\right)\left(b+c\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\a+c=0\\b+c=0\end{matrix}\right.\)

\(M=\left(a^{2015}+b^{2015}\right)\left(a^{2017}+b^{2017}\right)\left(a^{2019}+b^{2019}\right)\)

- Nếu \(a+b=0\Rightarrow M=0\)

- Nếu \(\left[{}\begin{matrix}a+c=0\\b+c=0\end{matrix}\right.\) thì ko tính được giá trị cụ thể của M

Khi đó \(\left[{}\begin{matrix}M=\left(2018^{2015}+b^{2015}\right)\left(2018^{2017}+b^{2017}\right)\left(2018^{2019}+b^{2019}\right)\\M=\left(2018^{2015}+a^{2015}\right)\left(2018^{2017}+a^{2017}\right)\left(2018^{2019}+a^{2019}\right)\end{matrix}\right.\)


Các câu hỏi tương tự
Nguyễn Thị Minh Châu
Xem chi tiết
Trần Trọng Quân
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Khánh Hoà
Xem chi tiết
Đồng Niên
Xem chi tiết
Bùi Thanh Tâm
Xem chi tiết
Quỳnh Anh Tong
Xem chi tiết
Loveduda
Xem chi tiết
Bùi Thị Xuân Hạ
Xem chi tiết