Bài 1: Nhân đơn thức với đa thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Duong Thi Nhuong

Rút gọn:

\(A=\left(1+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)-1\)

\(B=\dfrac{1}{1+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{5}}+...+\dfrac{1}{\sqrt{2015}+\sqrt{2017}}\)

Nguyen Thi Trinh
31 tháng 5 2017 lúc 10:48

ĐKXĐ: \(x\ge0,x\ne1\)

\(A=\left(1+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)-1\)

= \(\dfrac{x+\sqrt{x}+1}{x+1}:\left(\dfrac{x+1-2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right)-1\)

= \(\dfrac{\left(x+\sqrt{x}+1\right)\left(x+1\right)\left(\sqrt{x}-1\right)}{\left(x+1\right)\left(\sqrt{x}-1\right)^2}-1\)

= \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}-1\)

= \(\dfrac{x+\sqrt{x}+1-\sqrt{x}+1}{\sqrt{x}-1}\)

= \(\dfrac{x+2}{\sqrt{x}-1}\)


Các câu hỏi tương tự
Chii Phương
Xem chi tiết
Trần Thanh Hiếu
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nozomi Judo
Xem chi tiết
Vũ Thảo Anh
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Nguyễn Anh Tú
Xem chi tiết