bài này c-s sẽ đỡ lo ngược hơn, nhưng trên có ghi am-gm thì xài am-gm thôi ( t cx hay bị ngược dấu vs lại dg muốn ngủ nên xét bài hộ)
Bài giải__
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{1-ab}=1+\frac{ab}{1-ab}\le1+\frac{ab}{1-\frac{a^2+b^2}{2}}=1+\frac{2ab}{a^2+b^2+2c^2}\)
\(=1+\frac{2ab}{\left(a^2+c^2\right)+\left(b^2+c^2\right)}\le1+\frac{ab}{\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}}\)
\(\le1+\frac{1}{2}\left(\frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}\right)\). Tương tự ta cũng có:
\(\hept{\begin{cases}\frac{1}{1-bc}\le1+\frac{1}{2}\left(\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\right)\\\frac{1}{1-ca}\le1+\frac{1}{2}\left(\frac{c^2}{b^2+c^2}+\frac{a^2}{a^2+b^2}\right)\end{cases}}\)
Cộng theo vế 3 BĐT ta dc:
\(VT\le3+\frac{1}{2}\left(\frac{a^2+b^2}{a^2+b^2}+\frac{b^2+c^2}{b^2+c^2}+\frac{c^2+a^2}{c^2+a^2}\right)=\frac{9}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
vâng,t biết t còn kém,sang diendantoanhoc.net rồi so sánh thử ĐHV bên đó với CTV bên đây ntn , mở rộng tầm mắt chút đi
http://toanhocvavedep.blogspot.com/ ; http://tanghaituan.com/ ; http://forum.mathscope.org/ ;...