\(\Leftrightarrow a^3+b^3+c^3+6abc\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc\)
\(\Leftrightarrow a^3+b^3+c^3+3abc\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)
Đây là BĐT Schur bậc 3, cách chứng minh nó có thể tìm thấy ở mọi nơi