Cho ba số thực a, b, c. Chứng minh rằng:\(\left(a^2-bc\right)^3+\left(b^2-ca\right)^3+\left(c^2-ab\right)^3\ge3\left(a^2-bc\right)\left(b^2-ca\right)\left(c^2-ab\right)\)
Với a,b,c >0 và không hai số nào bằng nhau. Chứng minh rằng:
\(\frac{a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)}{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}\ge3\sqrt[3]{abc}\)
Chứng minh rằng với mọi a,b,c thì
\(\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)\ge3\left(a+b+c\right)^2\)
Với \(a,b,c\ge0\) và không có hai số nào bằng nhau. Chứng minh rằng
\(\frac{a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)}{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}\ge3\sqrt[3]{abc}\)
Cho a, b, c>0. CMR: \(\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)\ge3\left(a+b+c\right)^2\)
Cho a,b,c là các số thực dương tùy ý. Chứng minh rằng :
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\left[1+\sqrt{\frac{\left(a+b+c\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(ab+bc+ca\right)^2}}\right]\)
Hóng sol hay cho bài này.
Cho a,b,c >0. Chứng minh rằng: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}+\frac{\left(9+4\sqrt{2}\right)\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{2\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}\)
(tthnew)
Cho a,b,c > 0 thỏa mãn a + b + c = 3.
Chứng minh rằng: \(\frac{a^4}{\left(b+c\right)\left(b^2+c^2\right)}+\frac{b^4}{\left(c+a\right)\left(c^2+a^2\right)}+\frac{c^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{3}{4}\)
cho 3 số a, b, c>0, và a+b+c=3. chứng minh rằng:
\(\frac{a^4}{\left(a+2\right)\left(b+2\right)}+\frac{b^4}{\left(b+2\right)\left(c+2\right)}+\frac{c^4}{\left(c+2\right)\left(a+2\right)}\ge\frac{1}{3}\)
giải giup minh nhe