Ta có: \(A=a^3+b^3+ab\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+ab\)
\(=a^2-ab+b^2+ab\)
\(=a^2+b^2\)
Mà a+b=1 =>b=1-a
\(\Rightarrow A=a^2+\left(1-a\right)^2\)
\(=a^2+1-2a+a^2\)
\(=2a^2-2a+1\)
\(=2\left(a^2-a+\frac{1}{2}\right)\)
\(=2\left(a^2-a+\frac{1}{4}\right)+\frac{1}{2}\)
\(=2\left(a-\frac{1}{2}\right)^2+\frac{1}{2}\)
Ta có : \(2\left(a-\frac{1}{2}\right)^2\ge0\forall a\)
\(\Rightarrow2\left(a-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall a\)
Hay: \(A\ge\frac{1}{2}\forall a\)
Dấu = xảy ra khi : \(2\left(a-\frac{1}{2}\right)^2=0\Rightarrow a=\frac{1}{2}\)
\(\Rightarrow b=1-\frac{1}{2}=\frac{1}{2}\)
Vậy MinA =1/2 tại a=b=1/2
A = (a+b)3 -3ab(a+b) +ab
= 13 - 3ab + ab
=1-2ab
Áp dụng cô si cho hai số ko âm a,b ta đc
ab ≤( a+b)^2 /2^2
ab ≤ 1/4
Thay vào tính nốt
Nguyễn Hoàng,mk thấy cách của miyano shiho dễ hiểu hơn