\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2+ab+b^2\right)+3a^3b+3ab^3+6a^2b^2\)
\(=a^2+ab+b^2+3ab\left(a^2+b^2+2ab\right)\)
\(=a^2+ab+b^2+3ab\left(a+b\right)^2\)
\(=a^2+2ab+b^2+2ab\)
\(= \left(a+b\right)^2+2ab=2ab\)
ta co
M = a³ + b³ + 3ab(a² + b²) + 6a²b²(a + b)
= (a+b)(a² - ab + b²) + 3ab[(a+b)² - 2ab] + 6a²b²(a +b )
= (a+b) [(a +b)² - 3ab] + 3ab[(a+b)² - 2ab] + 6a²b²(a +b )
_______thay a + b = 1 __________________:
M = 1.(1 - 3ab) + 3ab(1 - 2ab) + 6a²b²
M = 1 - 3ab + 3ab - 6a²b² + 6a² b² = 1
ta có:a3+b3+3ab(a2+b2)+6a2b2(a+b)=(a+b)(a2-ab+b2)+3a3b+3ab3+6a2b2.1
=a2-ab+b2+3ab(a2+2ab+b2)=a2-ab+b2+3ab(a+b)2=a2-ab+b2 + 3ab=a2+2ab+b2=(a+b)2=12=1
ta có : M=2.(a^3 +b^3) -3.(a^2 + b^2)
<=>M=2.(a+b)(a^2 -ab +b^2) - 3(a^2 +3b^2)
<=>M=2(a^2 -ab +b^2) -3(a^2 +b^2) vì a+b=1(gt)
<=>M=-(a^2 +b^2 +2ab)
<=>M=-(a+b)^2
<=>M=-1 (vì a+b=1)