\(a+b=1\)\(\Rightarrow\left(a+b\right)^3=1\)
\(\Leftrightarrow a^3+3ab\left(a+b\right)+b^3=1\)
\(\Leftrightarrow a^3+3ab+b^3=1\)
Ta có: a + b = 1
=> (a + b)3 = 1
=> a3 + 3a2b + 3ab2 + b3 = 1
=> a3 + b3 + 3ab(a + b) = 1
mà a + b = 1
=> a3 + b3 + 3ab = 1
Ta có:
a^3+b^3+3ab= a^3 +b^3+3ab(a+b) (do a+b=1)
=(a+b)^3=1