Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Phúc

Cho a,b dương thay đổi và thoả (căn của a + 2 )( căn của b + 2) >= 9

Tìm min P = a3/a2+2b2 + b3/b2+2a2

huỳnh minh quí
2 tháng 3 2017 lúc 23:02

\(P=\frac{a^3}{a^2+2b^2}+\frac{b^3}{b^2+2a^2}\)
\(\Leftrightarrow P=a-\frac{2ab^2}{a^2+2b^2}+b-\frac{2a^2b}{b^2+2a^2}\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\hept{\begin{cases}a^2+2b^2\ge2\sqrt{2a^2b^2}=2ab\sqrt{2}\\b^2+2a^2\ge2\sqrt{2a^2b^2}=2ab\sqrt{2}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{2ab^2}{a^2+2b^2}\le\frac{2ab^2}{2ab\sqrt{2}}=\frac{b}{\sqrt{2}}\\\frac{2a^2b}{b^2+2a^2}\le\frac{2a^2b}{2ab\sqrt{2}}=\frac{a}{\sqrt{2}}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a-\frac{2ab^2}{a^2+2b^2}\ge a-\frac{b}{\sqrt{2}}\\b-\frac{2a^2b}{b^2+2a^2}\ge b-\frac{a}{\sqrt{2}}\end{cases}}\)

\(\Rightarrow a-\frac{2ab^2}{a^2+2b^2}+b-\frac{2a^2b}{b^2+2a^2}\ge a+b-\left(\frac{a+b}{\sqrt{2}}\right)\)

\(\Rightarrow a-\frac{2ab^2}{a^2+2b^2}+b-\frac{2a^2b}{b^2+2a^2}\ge\frac{\left(2-\sqrt{2}\right)\left(a+b\right)}{2}\)

Ta có  \(\sqrt{\left(a+2\right)\left(b+2\right)}\ge9\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow9\le\sqrt{\left(a+2\right)\left(b+2\right)}\le\frac{a+b+4}{2}\)

\(\Rightarrow9\le\frac{a+b+4}{2}\)

\(\Rightarrow a+b\ge14\)

\(\Rightarrow\frac{\left(2-\sqrt{2}\right)\left(a+b\right)}{2}\ge14-7\sqrt{2}\)

\(\Rightarrow a-\frac{2ab^2}{a^2+2b^2}+b-\frac{2a^2b}{b^2+2a^2}\ge14-7\sqrt{2}\)

\(\Rightarrow P\ge14-7\sqrt{2}\)

Vậy GTNN của \(P=14-7\sqrt{2}\)


Các câu hỏi tương tự
Le Nhat Phuong
Xem chi tiết
Võ Quang Nhân
Xem chi tiết
Phúc Phúc
Xem chi tiết
SANS:))$$^
Xem chi tiết
Nguyễn An
Xem chi tiết
ILoveMath
Xem chi tiết
•长ąŦ๏Ʀเ•
Xem chi tiết
Trần Ngọc Hoàng
Xem chi tiết
Phạm Mỹ Hạnh
Xem chi tiết