\(\sqrt{a+b}=\sqrt{a-1}+\sqrt{b-1}\)
\(\Leftrightarrow\left(\sqrt{a+b}\right)^2=\left(\sqrt{a-1}+\sqrt{b-1}\right)^2\)
\(\Leftrightarrow a+b=a-1+b-1+2\sqrt{\left(a-1\right)\left(b-1\right)}\)
\(\Leftrightarrow\sqrt{\left(a-1\right)\left(b-1\right)}=1\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)=1\)
\(\Leftrightarrow ab-a-b+1=1\)
\(\Leftrightarrow ab-a-b=0\)
\(\Leftrightarrow a+b=ab\) ( đfcm )