Cho a,b >0, a+b=1
Tìm min
a) F= 1/a^2+b^2 + 1/3ab + 10
b) G= 1/a^2+b^2 + 1/5ab + ab -2
Cho a,b >0, a+b=1
Tìm min
a) F= 1/a^2+b^2 + 1/3ab + 10
b) G= 1a^2+b^2 + 1/5ab + ab -2
cho a,b >0, a+b=1
B= 1/a^2+b^2 + 1/ab + 2ab
C=1/a^2+b^2 + 1/ab + 4ab
D=1/a^2+b^2 + 1/ab + 5ab
a,cho x+y>=6;x,y>0,tìm min của p=5x+3y+10/x+8/y
b, a;b;c là 3 số thực dương thoả mãn a+2b+3c>=20. Tìm min của a+b+c+3/a+9/b+4/c
c,Cho x;y>0 thoả mãn x+y<=1, tìm min A=(1-1/x)-(1/y^2)
d,Cho a;b;c >0, a+b+c=<3/2, tìm min của A=a+b+c+1/a+1/b+1/c
e, Cho a,b dương,a;b=<1, tìm min của P=1/(a^2+b^2) +1/ab
g,Cho a;b;c>0, a+b+c=<1, tìm min của P=a+b+c+2(1/a+1/b+1/c)
a) \(a^2+b^2=1\)
Tìm min/max F = \(\dfrac{a}{b+2}\)
b)\(2a^2-2ab+5b^2=1\)
Tìm min/max G = \(\dfrac{\left(a+b\right)}{a-2b+2}\)
Cho a,b > 0 và ab = 1:
Tìm Min của P = \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{2}{a^2+b^2}\)
cho a,b>0(t/m)a+b<=1/2 tìm min 1/(a^2+b^2)+2/(ab)+ab
Cho \(a,b\in\) Z; \(a,b\ne0;a\ne3b;a\ne-5b\). CMR giá trị của biểu thức E là 1 số nguyên lẻ với :
\(E=\dfrac{b\left(2a^2+10ab+a+5b\right)}{a-3b}:\dfrac{a^2b+5ab^2}{a^2-3ab}\)
cho a^2 + b^2 = 2*(8+ab) va a<b. tinh a^2*(a+1)-b^2(b-1)+ab-3ab*(a-b+1)+64