Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
BHQV

Cho \(a,b\in\) Z; \(a,b\ne0;a\ne3b;a\ne-5b\). CMR giá trị của biểu thức E là 1 số nguyên lẻ với :

\(E=\dfrac{b\left(2a^2+10ab+a+5b\right)}{a-3b}:\dfrac{a^2b+5ab^2}{a^2-3ab}\)

Toru
25 tháng 11 2023 lúc 23:16

Với \(a,b\in\mathbb{Z};a,b\ne0;a\ne3b;a\ne-5b\), ta có:

\(E=\dfrac{b\left(2a^2+10ab+a+5b\right)}{a-3b}:\dfrac{a^2b+5ab^2}{a^2-3ab}\)

\(=\dfrac{b\left[2a\left(a+5b\right)+\left(a+5b\right)\right]}{a-3b}:\dfrac{ab\left(a+5b\right)}{a\left(a-3b\right)}\)

\(=\dfrac{b\left(2a+1\right)\left(a+5b\right)}{a-3b}:\dfrac{b\left(a+5b\right)}{a-3b}\)

\(=\dfrac{b\left(2a+1\right)\left(a+5b\right)}{a-3b}\cdot\dfrac{a-3b}{b\left(a+5b\right)}\)

\(=2a+1\)

Vì \(2a+1\) là số nguyên lẻ với mọi a nguyên

nên \(E\) là số nguyên lẻ.

\(\text{#}Toru\)


Các câu hỏi tương tự
Cáo Nô
Xem chi tiết
02-Nguyễn Thiện Anh
Xem chi tiết
Trần Vũ Phương Thảo
Xem chi tiết
lê thanh tùng
Xem chi tiết
Phong Du
Xem chi tiết
Linh Khánh
Xem chi tiết
Vũ Trần Giang
Xem chi tiết
♚ QUEEN ♚
Xem chi tiết
Linh Chi
Xem chi tiết