a: \(\overrightarrow{AB}=\left(-4;-2\right)\)
\(\overrightarrow{DC}=\left(-x;5-y\right)\)
Để ABCD là hình bình hành thì \(\overrightarrow{AB}=\overrightarrow{DC}\)
=>-x=-4 và 5-y=-2
=>x=4 và y=7
b: \(\overrightarrow{AH}=\left(x-3;y-4\right)\)
\(\overrightarrow{BC}=\left(1;3\right)\)
\(\overrightarrow{BH}=\left(x+1;y-2\right)\)
\(\overrightarrow{AC}=\left(-3;1\right)\)
Vì H là trực tâm
nên ta có:
\(\left\{{}\begin{matrix}1\left(x-3\right)+3\left(y-4\right)=0\\-3\left(x+1\right)+1\left(y-2\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3+3y-12=0\\-3x-3+y-2=0\end{matrix}\right.\)
=>x+3y=15 và -3x+y=5
=>x=0; y=5
d: M thuộc Ox nên M(x;0)
\(\overrightarrow{AM}=\left(x-3;-4\right)\)
\(\overrightarrow{AB}=\left(-4;-2\right)\)
Để A,B,M thẳng hàng thì \(\dfrac{x-3}{-4}=\dfrac{-4}{-2}=2\)
=>x-3=-8
=>x=-5