cho a,b,c là 3 số dương thỏa mãn: a+b+c=2019. Tìm GTNN : a3/a2+b2+ab + b3/b2+c2+bc + c3/c2+a2+ca
1. a3 + b3 + c3 ≥ a2 . căn (bc) + b2 .căn (ac) + c2 .căn (ab)
2. (a2 + b2 + c2)(1/(a +b ) + 1/(b+c) +1/(a+c) ) ≥ (3/2)(a + b+c)
3. a4 + b4 +c4 ≥ (a + b+c)abc
Cho ab + bc + ac = 9 , a≥1 , b≥1 , c≥1
tìm min và max của bt P = a2+b2+c2
cho a, b,c >0 thỏa mãn ab+bc+ca=abc
CMR : (√b2+2a2)/ab + (√c2+2b2)/bc + (√a2+2c2)/ac
cho a+b+c=9,a2+b2+c2=53.hỏi ac+bc+ab=?
Cho tam giác ABC có góc A = 120 độ, BC = a, AC = b, AB = c. Chứng minh rằng a2 = b2 + c2 + bc ?
Cho a, b,c là độ dài ba cạnh tam giác. Chứng minh rằng: a/(a2 + bc) + 1/(b2+ ac) + s/(c2+ab) <= (a+b+c)/2abc
Cho a, b, c thuộc R và a2 + b2 + c2 <= 2. Tìm GTNN P = 2021ca - ab - bc
Cho a, b, c là các số thực thỏa mãn ab+bc+ca=3. CMR:
(a2+2)(b2+2)(c2+2)-18 ≥ 3(a2+b2+c2)
cho a,b,c ϵ R thỏa mãn a≥1; b≥1; 0≤c≤1 và a+b+c=3. Tìm GTLN và GTNN của P = (a2+b2+c2)/ab+bc+ca