\(A_1+A_2+A_3+...+A_{100}=2.2019\). Mà 2.2019 chia hết cho 2
\(\Rightarrow A_1+A_2+A_3+...+A_{100}⋮2\)
\(\Rightarrow A_1.2+A_2.2+A_3.2+...+A_{100}.2\)
\(=2.\left(A_1+A_2+A_3+...+A_{100}\right)⋮2\)
=> 2(A1+A2+A3+....+A100)
Mà 2 chia hết cho 2
=> 2(A1+A2+A3+....+A100) chia hết cho 2
=> A1.2+A2.2+A3.2+.…..+A100.2 chia hết cho 2(đpcm)
Ta luôn luôn có :
n²-n=n.n-n=n×(n-1)
Nxét:n và n-1 là 2 số tự nhiên liên tiếp⇒n×(n-1)⋮ 2 (1)
\(\Rightarrow S=a\dfrac{2}{1}+a\dfrac{2}{2}+a\dfrac{2}{3}+...+a-\left(a_1+a_2+a_3+...+a_{100}\right)\\ \Rightarrow S=a\dfrac{2}{1}+a\dfrac{2}{2}+a\dfrac{2}{3}+...+a\dfrac{2}{100}-\left(a_1-a_2-a_3-...-a_{100}\right)\\ \Rightarrow S=\left(a\dfrac{2}{1}-a_1\right)+\left(a\dfrac{2}{2}-a_2\right)+\left(a\dfrac{2}{3}-a_3\right)+...\left(a\dfrac{2}{100}-a_{100}\right)⋮2\)
\(\Rightarrow a\dfrac{2}{1}+a\dfrac{2}{2}+a\dfrac{2}{3}+...+a\dfrac{2}{100}⋮2\)