\(\dfrac{1}{a+1}+\dfrac{1}{b+1}\ge\dfrac{4}{a+1+b+1}=\dfrac{4}{3}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)
\(\dfrac{1}{a+1}+\dfrac{1}{b+1}\ge\dfrac{4}{a+1+b+1}=\dfrac{4}{3}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)
Cho a,b,c khác 0 và 1/a + 1/b + 1/c = 1/a+b+c. CMR : (a+b)(b+c)(a+c)=0
Bài5: cho a,b,c>0.CMR
1, 2/a+1/b >= 4/a+b
2, 1/a+1/b+1/c>= a/a+b+c
Bài 6: cho a,b>=0 cmr
1, a^3+b^4>=ab(a+b)
2, a^4+b^4>=ab(a^2+b^2)
3, a5+b5>=ab(a^3+b^3)
Bài 7 cho a,b,c>0 cmr
1/a^3+b^3+abc +1/b^3+c^3+abc+1/c^3+a^3+2 <1/abc
Bài 8cho a,b,c>0;abc=1
1, 1/a^3+b^3+2 +1/b^3+c^3+2 +1/c^3+a^3+2 =< 1
2,ab/a^5+b^5+ab +bc/b^5+c^5+bc + ca/c^5+a^5+ca =<1
Cho a,b,c khác 0 và a+b+c=0. CMR 1/b²+c²-a² +1/c²+a²-b² +1/a²+b²-c²
toàn bộ dùng bất đẳng thức svac-xơ hoặc bunhiacopski
bài 1: cho x,y,z>0. CMR:
a,1/x+1/y>=4/x+y
b,1/x+1/y+1/z>=9/x+y+z
bài 2: cho a,b,c>0. CMR:
a,a^2/(b+c)+b^2/(c+a)+c^2/(a+b)>=(a+b+c)/2
b, a^2/(2b+5c)+b^2/(2c+5a)+c^2/(2a+5b)>=(a+b+c)/7
bài 3: cho a,b,c>0. CMR a/(b+c)+b/(c+a)+c/(b+a)>=3/2
bài 4: cho a,b,c>0. CMR:
1/(b+2c)+b/(c+2a)+c/(a+2b)>=1
bài 5: cho a+b+c=1. Tìm min
a, P=1/a+4/b+9/c
b, Q+a^2/(b+3c)+b^2/(c+3a)+c^2/(a+3b)
bài 6: cho 3x^2+5y^2=3/79
tìm max, min A=x+4y
bài 7: tìm min P,Q,R
a, P=1/x+1/x;x>0
b, Q=x+1/x;x>=3
c, R=1/x+4/(1-x);0<x<1
bài 8: cho a,b,c là 3 cạnh một tam giác. CMR
a, a/(b+c-a)+b/(c+a-b)+c/(a+b-c)>=3
b, tìm min P
P=a/(b+c-a)+4b/(c+a-b)+9c/(a+b-c)
cho a+b+c = 0 và a,b ,c khác 0
CMR 1/a^2 + 1/b^2 + 1/c^2 = (1/a + 1/b + 1/c)^2
Cho a+b+c = 0 và a,b ,c khác 0
CMR 1/a^2 + 1/b^2 + 1/c^2 = (1/a + 1/b + 1/c)^2
cho a b c 0 và a+b+c=3 CMR a/1+b^2 +b/1+c^2 +c/1+a^2 >=3/2
Cho a/c=a-b/b-c (a,c khác 0. a-b khác 0; b-c khác 0).CMR 1/a + 1/a-b=1/b-c -1/c
Cho a,b,c>0 và a+b+c=1 cmr 1/a+1/b+1/c > hoặc =0
giup minh nhanh nha thanks
Bài 1:Cho \(a+b+c=3\) \(CMR\) \(a^4+b^4+c^4\ge a^3+b^3+c^3\)
Bài 2:Cho \(a>0;b>0;c>0\) thỏa mãn \(a^2+b^2+c^2=1\)
\(CMR\)\(\frac{1}{a^2+b^2}+\frac{1}{b^2+c^2}+\frac{1}{a^2+c^2}\le\frac{a^3+b^3+c^3}{2abc}+3\)