Biểu thức này ko tồn tại min khi a;b thực. Nó chỉ tồn tại khi b dương
Ví dụ em lấy \(a=1000\) và \(b=-0,0001\) thay vào sẽ thấy giá trị A thế nào
Biểu thức này ko tồn tại min khi a;b thực. Nó chỉ tồn tại khi b dương
Ví dụ em lấy \(a=1000\) và \(b=-0,0001\) thay vào sẽ thấy giá trị A thế nào
Cho các số a,b,c>0 và a+b+c\(\le\dfrac{3}{2}\).Tìm GTNN của biểu thức
\(Q=\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{c^2}}+\sqrt{c^2+\dfrac{1}{a^2}}\)
Cho a,b,c>0 và a+b+c\(\le\dfrac{3}{2}\).Tìm GTNN của biểu thức
\(Q=\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{c^2}}+\sqrt{c^2+\dfrac{1}{a^2}}\)
Đừng trình bày tắt quá nhe,mik không hỉu :<
Cho a,b,c>0 và a+b+c\(\le\dfrac{3}{2}\).Tìm GTNN của biểu thức
\(Q=\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{c^2}}+\sqrt{c^2+\dfrac{1}{a^2}}\)
Đừng trình bày quá vắn tắt (khó hỉu =[[) đừng dùng các bất đẳng thức quốc tế như bunhiacopxki,svácxơ,....
cho các số thực dương a,b,c thoả mãn: 2/b = 1/a + 1/c. Tìm GTNN của biểu thức: P= \(\dfrac{a+b}{2a-b}\) + \(\dfrac{c+b}{2c-b}\)
Cho a,b > 0 và a2+b2=1. Tìm GTNN của biểu thức sau :
P = \(\left(2+a\right)\left(1+\dfrac{1}{b}\right)+\left(2+b\right)\left(1+\dfrac{1}{a}\right)\)
Tìm GTNN của biểu thức sau:
1)A=\(\dfrac{b^2}{b-1}\), b>1
Tìm GTLN của biểu thức sau:
1)B=\(\dfrac{\sqrt{b-2}}{b},b>2\)
cho a,b>0 thỏa mãn a+b≤1.Tìm GTNN của biểu thức
P=\(a^2+b^2+\dfrac{1}{a^2}+\dfrac{1}{b^2}\)
Cho các số thực dương a, b, c thỏa mãn a ≥ b + c. Tìm GTNN của biểu thức:
P = \(\dfrac{a}{b+c}+\dfrac{b}{a+2c}+\dfrac{c}{a+2b}\)
cho a,b>0 thỏa mãn a+b≤1.Tìm GTNN của biểu thức
P=\(a^2+b^2+\dfrac{1}{a^2}+\dfrac{1}{b^2}\)
Cho x>0 và x≠1, giá trị nhỏ nhất của biểu thức P= \(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\) bằng \(\dfrac{a}{b}\)(với a,b là các số nguyên dương và \(\dfrac{a}{b}\) (với a,b là các số nguyên dương và \(\dfrac{a}{b}\) phân số tối giảm). Giá trị a+b bằng
A, 5
B. 9
C. 7
D. 6