a) Cho a,b,c đều khác nhau đôi một và \(\frac{a+b}{c}=\frac{b+a}{a}=\frac{c+a}{b}\)
Tính giá trị của biểu thức P=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
b) Cho abc khác 0 và đôi một khác nhau thỏa mãn a+b+c=0
Tính giá trị biểu thức \(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{b-a}{a}+\frac{c-a}{b}+\frac{a-b}{c}\right)\)
Cho a, b, c khác 0 và a + b + c=0
Tính giá trị biểu thức A= (1 + a/b)(1 + c/a + b/c + b/a)
Đang cần gấp ạ
Cho a+b+c=0 và abc khác 0,tính giá trị của biểu thức:
P= \(\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{a^2+c^2-b^2}+\dfrac{1}{a^2+b^2-c^2}\)
Cho 1/a + 1/b +1/c=0.Tính giá trị của biểu thức M=bc/a^2 +ac/b^2 +ab/c^2 với a,b,c khác 0
cho a^3+b^3+c^3= 3abc với mọi a, b, c khác 0
tính giá trị biểu thức: (1+a/b)(1+b/c)(1+c/a)
Cho a,b,c là 3 số đôi một khác nhau và khác 0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Tính giá trị của biểu thức M=\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\)
cho a,b,c là các số thực đôi 1 khác nhau và khác 0 thoả mãn: a^2-b=b^2-c=c^2-a. tính giá thị của biểu thức P=(a+b)(b+c)(c+a)
a) Cho đa thức f(x) thỏa mãn: (x^2 + 2).f(x) = (x-2).f.(x+1) vs mọi giá trị của x. Chứng tỏ f(x) có ít nhất 2 nghiệm nguyên dương khác nhau.
b) Cho a,b,c khác 0 và thỏa mãn: a+b/c=b+c/a=c+a/b. Tính giá trị của biểu thức P= (1+a/b)(1+b/c)(1+c/a)
Nhanh giúp mìh nha! Quý mn nhiều lắm! Love ya!
Tính giá trị biểu thức :P = (a/b +1 ) ( b/c + 1 ) (c/a + 1 ) Với a3 + b3 + c3 = 3abc và a , b , c khác 0