(a+b).(1/a+1/b) >= 4
<=>(a+b).[(a+b)/ab] >= 4
<=>(a+b)2/ab >= 4
<=>(a+b)2 >= 4ab
<=>(a+b)2-4ab >= 0
<=>a2+2ab-4ab+b2 >= 0
<=>a2-2ab+b2 >= 0
<=>(a-b)2 >= 0( luôn đúng với mọi a,b)
Dấu "=" xảy ra<=>a=b
\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)>=4\)
\(<=>\left(a+b\right).\left(\frac{a+b}{ab}\right)>=4\)
\(<=>\frac{\left(a+b\right)^2}{ab}>=4\)
\(<=>\left(a+b\right)^2>=4ab\)
\(<=>\left(a+b\right)^2-4ab>=0\)
\(<=>a^2+2ab+b^2-4ab>=0\)
\(<=>a^2-2b+b^2>=0\)
\(<=>\left(a-b\right)^2>=0\) (dấu "=" xảy ra<=>a=b)
BĐT cuối luôn đúng,ta có điều phải chứng minh