a) Cho a+b+c=0. CM:
\(a^4+b^4+c^4=\dfrac{1}{2}\left(a^2+b^2+c^2\right)^2\)
b) Cho a+b+c+d=0. CM:\(a^3+b^3+c^3+d^3=3\left(ab-cd\right)\left(c+d\right)\)
Cho a+b+c=2 và ab+bc+ac=1. CM: \(0\le a,b,c\le\dfrac{4}{3}\)
Cho (a+b+c)^2=a^2+b^2+c^2 và abc khác 0
CM \(\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}=3\)
Cho a, b, c >0 thỏa mãn: abc=1. CM: \(\dfrac{1}{a^2-ab+b^2}+\dfrac{1}{b^2-bc+c^2}+\dfrac{1}{c^2-ac+a^2}\le a+b+c\)
Cho ab+bc+ca=0 với a, b, c thuộc Q. CM: A=(a^2+1).(b^2+1).(c^2+1) là bình phương của 1 số hữu tỉ
Cho a,b,c thỏa mãn điều kiện a2+b2+c2=1
CM: abc +2(1+a+b+c+ab+ac+bc)≥0
Cho a, b,c >0
Cm:(a^3+b^3+c^3)(1/a+1/b+1/c)> =(a+b+c)^2
Cho a + b + c = 0 và a,b,c \(\ne\) 0.
Chứng minh rằng: \(\dfrac{ab}{a^2+b^2-c^2}+\dfrac{bc}{b^2+c^2-a^2}+\dfrac{ca}{c^2+a^2-b^2}=-\dfrac{3}{2}\)
1. Cho a,b,c > 0 thõa mãn abc = 1. CM: \(\frac{a}{a+b^4+c^4}+\frac{b}{b+c^4+a^4}+\frac{c}{c+a^4+b^4}\le1\)
2. CHo 1 < = a,b,c < = 3. thõa mãn a + b + c = 3. CM: \(a^2+b^2+c^2\le14\)