Ta có : \(a^2+b^2+c^2=1\Rightarrow\left|a\right|;\left|b\right|;\left|c\right|\le1\)
\(\Rightarrow-1\le a;b;c\le1\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge0\)
\(\Rightarrow a+b+c+ab+ac+bc+abc+1\ge0\left(1\right)\)
Lại có : \(\left(a+b+c+1\right)^2\ge0\)
\(\Leftrightarrow\left(a+b+c\right)^2+2\left(a+b+c\right)+1\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac+a+b+c\right)+1\ge0\)
\(\Leftrightarrow2\left(ab+bc+ac+a+b+c+1\right)\ge0\)
\(\Leftrightarrow ab+bc+ac+a+b+c+1\ge0\left(2\right)\)
Từ ( 1 ) ; ( 2 ) \(\Rightarrow abc+2\left(ab+bc+ac+a+b+c+1\right)\ge0\left(đpcm\right)\)