\(\left(a+b+c\right)^2\le\left(2b+c\right)^2\)
Ta xét hiệu:
\(\left(2b+c\right)^2-9bc=4b^2-5bc+c^2=\left(b-c\right)\left(4ab-c\right)\le0\)
Dễ thấy:
\(\hept{\begin{cases}b-c< 0\\c< a+b\ge2ab\end{cases}}\Rightarrow4b-c>0\)
Q.E.D dấu: "=" <=> a = b = c