a) có \(a^3+b^3+c^3-3acb=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
\(=\left(a+b+c\right)\left(\left(a^2+b^2+c^2+2ab+2ac+2bc\right)-3ab-3ac-3bc\right)\)
\(=\left(a+b+c\right)\left(\left(a+b+c\right)^2-3\left(ac+ab+bc\right)\right)\)
\(=3\left(9-3\left(ac+ab+bc\right)\right)=9\left(3-ab-ac-bc\right)\)