Cho a,b,c>0
CMR:
\(\dfrac{bc}{a^2b+a^2c}+\dfrac{ca}{ab^2+b^2c}+\dfrac{ab}{ac^2+bc^2}\text{≥}\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
1. CMR: Nếu a,b,c là độ dài 3 cạnh tam giác thì:
\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\)
2. PTĐT thành nhân tử
a) \(a^6+a^4+a^2b^2+b^4+b^6\)
b) \(a^3+3ab+b^3-1\)
c) \(a^2b^2\left(b-a\right)+b^2c^2\left(c-b\right)-c^2a^2\left(c-a\right)\)
d) \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)
PTĐT thành nhân tử (PP xét giá trị riêng)
a) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
b) \(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)
c) \(\left(a+b+c\right)^5-a^5-b^5-c^5\)
d) \(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4\)
cho a+b+c=0 chứng minh
\(a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right).\)
Cho \(A=\frac{a^2\left(b^2+c^2\right)-b^2c^2}{a^2b^2c^2}\) ; \(B=\frac{b^2\left(a^2+c^2\right)-a^2c^2}{a^2b^2c^2}\) ; \(C=\frac{c^2\left(a^2+b^2\right)-a^2b^2}{a^2b^2c^2}\)
Và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\). Tính ABC
Cho \(A=\frac{a^2\left(b^2+c^2\right)-b^2c^2}{a^2b^2c^2}\) ; \(B=\frac{b^2\left(a^2+c^2\right)-a^2c^2}{a^2b^2c^2}\) ; \(c=\frac{c^2\left(a^2+b^2\right)-a^2b^2}{a^2b^2c^2}\)
Và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\). Tính ABC
1. Cho 3 số dương a, b, c thỏa mãn ab + bc + ca = 3abc
Tính GTNN của bt : \(M=\frac{2\left(a^2b^2+b^2c^2+c^2a^2\right)+abc}{a^2b^2c^2}\)
2. Cho a, b, c\(\inℝ^+\)thỏa mãn a + b + c = 4. Cmr BĐT sau luôn đúng :
\(10\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\ge\frac{4+5a}{4-a}+\frac{4+5b}{4-b}+\frac{4+5c}{4-c}\)
Cho abc=36,\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) .Tính
Q=\(\frac{a^2\left(b^2+c^2\right)-b^2c^2}{a^2b^2c^2}\cdot\frac{b^2\left(c^2+a^2\right)-c^2a^2}{a^2b^2c^2}\cdot\frac{c^2\left(a^2+b^2\right)-a^2b^2}{a^2b^2c^2}\)
Cho abc = 36 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(A=\frac{a^2\left(b^2+c^2\right)-b^2c^2}{a^2b^2c^2}\); \(B=\frac{b^2\left(c^2+a^2\right)-c^2a^2}{a^2b^2c^2}\); \(C=\frac{c^2\left(a^2+b^2\right)-a^2b^2}{a^2b^2c^2}\)
Tính A; B; C