Cho a,b,c>0 và a+b+c=3. Tìm gtnn của P=\(\dfrac{2a+b+c}{a+1}+\dfrac{a+2b+c}{b+1}+\dfrac{a+b+2c}{c+1}\)
Cho a,b,c dương ( lớn hơn 0) và \(a+b+c=3\)
chứng minh: \(\dfrac{a}{1+b^2c}+\dfrac{b}{1+c^2a}+\dfrac{c}{1+a^2b}\ge\dfrac{3}{2}\)
giúp mik với, mik cảm ơn
Cho a,b,c lớn hơn 0. Chứng minh \(\dfrac{a^3}{\left(a+2b\right)\left(b+2c\right)}\)+\(\dfrac{b^3}{\left(b+2c\right)\left(c+2a\right)}\)+\(\dfrac{c^3}{\left(c+2a\right)\left(a+2b\right)}\)≥\(\dfrac{a+b+c}{9}\)
Cho a,b,c >0, chứng minh rằng :
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\left(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{1}{c+2a}\right)\)
Cho: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) và a, b, c \(\ne\) 0
\(A=\dfrac{b^2c^2}{a}+\dfrac{c^2a^2}{b}+\dfrac{a^2b^2}{c}\)
CMR: 3abc = A
1)cho Q=\(\dfrac{a^4+a^3-a^2-2a-2}{a^4+2a^3-a^2-4a-2}\)
Tìm GTNN của Q
2)cho \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
CMR: \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)
giúp mình càng sớm càng tốt nhe các bạn
cho a,b,c là 3 cạnh tam giác, cmr:
\(\dfrac{3a+b}{2a+c}+\dfrac{3b+c}{2b+a}+\dfrac{3c+a}{2c+b}\ge4\)
Cho a,b,c>0. Chứng minh rằng: \(\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}\ge3\)
Với a, b, c là những số thực dương thỏa mãn \(\left(a+b\right)\left(b+c\right)\)\(\left(c+a\right)\)=1
Chứng minh rằng \(\dfrac{a}{b\left(b+2c\right)^2}\)+\(\dfrac{b}{c\left(c+2a\right)^2}\)+\(\dfrac{c}{a\left(a+2b\right)^2}\)≥\(\dfrac{4}{3}\)